Observations and modeling of magnetic reconnection driven by CME expansion

Lidia Van Driel-Gesztelyi^{*1,2,3}, Deborah Baker⁴, Tibor Torok⁵, Jack Carlyle⁶, Lucie Green⁴, David Williams¹, and Etienne Pariat⁷

¹UCL/MSSL – Holmbury St. Mary Dorking Surrey RH5 6NT, United Kingdom
²Konkoly Observatory – 1121 Budapest Konkoly-Thege Miklós út 15-17, Hungary
³Observatoire de Paris, LESIA – Ob – 5, place Jules Janssen 92195 Meudon Cedex, France
⁴UCL/MSSL – Holmbury St Mary Dorking Surrey RH5 6NT, United Kingdom
⁵Predictive Science Inc. (PSI) – Predictive Science, Inc., 9990 Mesa Rim Rd., Suite 170, San Diego, CA
⁹2121, USA, United States
⁶UCL-MSSL – Holmbury St Mary, Dorking, RH5 6NT, United Kingdom
⁷Observatoire de Paris, LESIA – O – 5, place Jules Janssen, 92195 Meudon Cedex, France

Abstract

Observations from NASA's Solar Dynamics Observatory of an unusually massive filament eruption on 7 June 2011 provide for the very first time images of a magnetic reconnection region in the solar corona. The reconnection occurs at a current sheet that forms between the erupting magnetic structure and a neighbouring active region. This scenario is supported by a numerical simulation of the eruption. Dense, cool back-flowing filament plasma is observed to be re-directed and *heated in situ*, producing coronal-temperature emission around the reconnection region. These results provide the first direct observational evidence that a large-scale re-configuration of the coronal magnetic field takes place during solar eruptions via the process of magnetic reconnection.

Keywords: prominence eruption, CME, magnetic reconnection

^{*}Speaker